Summary
- ED7220C 5-DOF Articulated Manipulator
- Forward Kinematics (Exact Solution)
- Inverse Kinematics (Exact Solution ingnored Singularity)
Dimensions of ED7220C
DH Parameters
- Joint Coordinates Definition
- DH Parameters (Standard form)
i | αi [deg] | ai [mm] | θi | di [mm] | HOME [deg] | RANGE [deg] | REMARK |
---|---|---|---|---|---|---|---|
1 | α1=−90 | a1=22 | θ1 | d1=140 | 0 | -155, +155 | |
2 | α2=0 | a2=218 | θ2 | d2=0 | −90 | -125, +45 | |
3 | α3=0 | a3=218 | θ3 | d3=0 | +90 | -130, +130 | |
4 | α4=−90 | a4=0 | θ4 | d4=0 | 0 | -40, +220 | J3 and J4 are on same position. |
5 | α5=0 | a5=0 | θ5 | d5=140 | −90 | -180, +180 |
- Check Validity of DH Parameters & Home Position
(Using MATLAB & Robotics toolbox by P.Corke)
Forward Kinematics
- General Transformation Matrix
- Transformation Matrix for each joints
Represent to sinθ1=S1...
T10=[C10−S1a1C1S10C1a1S10−10d10001] T21=[C2−S20a2C2S2C20a2S200100001] T32=[C3−S30a3C3S3C30a3S300100001] T43=[C40−S40S40C400−1000001] T54=[C5−S500S5C500001d50001]- Transformation Matrix from J1 to J3 (Base to Wrist)
Represent to sin(θ1+θ2)=S12...
And apply some trigonometric formulas :
S12=S1C2+C1S2 C12=C1C2−S1S2So we can take more simple form :
T31=[C1C23−C1S23−S1C1(a3C23+a2C2+a1)S1C23−S1S23C1S1(a3C23+a2C2+a1)−S23−C230−(a3S23+a2S2−d1)0001]- Check Validity
When ED7220C is on HOME POSITION,
q=[θ1θ2θ3]=[0−9090] T31=[C1C23−C1S23−S1C1(a3C23+a2C2+a1)S1C23−S1S23C1S1(a3C23+a2C2+a1)−S23−C230−(a3S23+a2S2−d1)0001]=[100a3+a100100−10a2+d10001]=[10024000100−103580001]The normal vector of Wrist is :
n_=[100]The orientation vector of Wrist is :
o_=[00−1]The approach vector of Wrist is :
a_=[010]And the position vector of Wrist is :
p_=[2400358]- Total Transformation Matrix from J1 to J5 (Base to Tool)
And apply some trigonometric formulas :
C123=C1C2C3−S1S2C3−C1S2S3−S1C2S3 S123=S1C2C3+C1S2C3+C1C2S3−S1S2S3So we can take more simple form :
n_=[C1C234C5+S1S5S1C234C5−C1S5−S234C5] o_=[−C1C234S5+S1S5−S1C234S5−C1C5S234C5] a_=[−C1S234−S1S234−C234] p_=[C1(−d5S234+a3C23+a2C2+a1)S1(−d5S234+a3C23+a2C2+a1)−d5C234−a3S23−a2S2+d1]- Check Validity
When ED7220C is on HOME POSITION,
q=[θ1θ2θ3θ4θ5]=[0−90900−90] T51=[n_o_a_p_0001]=[010240100000−12180001]Inverse Kinematics (Exact Solution)
- Tool configuration vector ω
NOTE : eq5π is the roll information of tool.
- Find q1
Represent to q1=θ1...
ω2ω1=S1(−d5S234+a3C23+a2C2+a1)C1(−d5S234+a3C23+a2C2+a1)=S1C1 atan2(ω2,ω1)=q1- Find q3
q234=q2+q3+q4 : This is global tool pitch angle.
C1ω4+S1ω5=−C21S234eq5π−S21S234eq5π=−S234eq5π ω5S1=−S234eq5π ∴q234=atan2(ω5S1,ω6)( This is not a good solution, what if S1=0 )
Define as ( to find q3 ) :
b1=C1ω1+S1ω2−a1+d5S234 b2=d1−d5C234−ω3b1 and b2 are all known, because we know q1 and q234.
b1=(C21+S21)(−d5S234+a3C23+a2C2+a1)−a1+d5S234=a2C2+a3C23 b2=d1−d5C234−(−d5C234−a3S23−a2S2+d1)=a2S2+a3+S23Now use …
b21+b22=(a22C22+a23C223+2a2a3C2C23)+(a22S22+a23S223+2a2a3S2S23)=a22+a23+2a2a3(C2C23+S2S23)=a22+a23+2a2a3C3q3=±acos(b21+b22−a22−a232a2a3) : 2 solutions by elbow up&down
- Find q2
Now we know q3, so we can solve
b1=a2C2+a3C23=a2C2+a3(C2C3−S2S3) b2=a2S2+a3+S23=a2S2+a3(S2C3+C2S3) b1=(a2+a3C3)C2−(a3S3)S2 b2=(a3S3)C2+(a2+a3C3)S2 C2=(a2+a3C3)b1+a3S3b2(a2+a3C3)2+a23S23 S2=(a2+a3C3)b2−a3S3b1(a2+a3C3)2+a23S23 atan2(S2,C2)=q2- Find q4
Remember q234=q2+q3+q4 ,
q4=q234−q2−q3 : Tool pitch angle
- Find q5
q5=π2ln(ω24+ω25+ω26) : Tool roll angle
- Solution Summary
JOINT | SOLUTION | VALID RANGE [deg] | REMARK |
---|---|---|---|
1 | q1=atan2(ω2,ω1) | -180 ~ +180 | |
2 | q2=atan2(S2,C2) | -90 ~ +90 | |
3 | q3=±acos(b21+b22−a22−a232a2a3) | -0 ~ +180 | |
4 | q4=q234−q2−q3 | -270 ~ +90 | |
5 | q5=π2ln(ω24+ω25+ω26) | -180 ~ +180 |
Notice
- This solution should be evaluated in simulation or real test.
- ED does not guarantee this solution’s safety & complete perfection.
- Use this solution only for educational purpose.
- This document was wrote for who has studied fundamental robotics.
- This document does not consider singularity problems, path planning, differential kinematics, dynamics, digital controls, and etc.
References
- Corke. Robotics Toolbox for MATLAB (Release 6) . pic@cat.csiro.au, 2001
- Desrochers. Notes of FUNDAMENTALS OF ROBOTICS . http://www.ecse.rpi.edu/Courses/F04/ECSE4490/Roboticsoutline04.htm, 2004
- Choi. Presentation of Implementation of Inverse Kinematics and Application . kjchoi@graphics.snu.ac.kr, 2007
- Craig. Introduction to robotics : mechanics and control . Pearson, 2005
- 김진오. 강의자료 : 산업용 로봇 기구설계 기초. 산업인력양성프로젝트, 2007
Revisions
- Rev-1.0 : First distribution
- Rev-1.1 : Fixed some wrong words
Author
- by DymaxionKim